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OBJECTIVE

To examine the theoretica l maximum entropy spectral estimate for
multiple sinusoids in noise .

RESULTS

It was shown that for the case of sinusoids in white noise , the theoretical
maximum entropy spectral estimate has very sharp peaks at the sinusoid
frequencies and that the heights of these peaks are proportional to the square
of the signal- to - noise ratios of the sinusoids and the square of the number
of prediction filte r coefficients . For the case of sinusoids in I-pole low-pass
noise , it was shown tha t the maximum entropy spectral resolution became

dependent on the frequencies of the sinusoids . This result is reasonable , since
the signal-to -noise ratio per unit bandwidth is also a function of frequency

for this case .
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ABSTRACT

In this paper an analytical technique based on the method of undetermined

coefficients is applied to the problem of computing the theoretical maximum

entropy (MEM) spectral estimate when the correlation function of the data is

known exactly and corresponds to N sinusoids in additive white noise and to N

sinusoids in additive 1—pole , low pass noise. For the white noise case, the L

prediction filter coefficients are expanded directly in terms of the input sinusoids.

This expansion leads to a transformation of the L X L normal equations for the

prediction filter coefficien ts to a set of 2N X 2N equations. The transformed

equations are a smaller set of equations to be solved whenever L >  2N and pro-

vide a convenient description of the interaction between the various frequency

components of the sinusoids which occurs in the MEM estimate. Further , for

certain cases where there is little interaction between some of the frequency

components of the sinusoids, the solution of the 2N X 2N equations may be

approximated (to zeroth order) by the solution of a smaller set of coupled equa-

tions. A better approximation to the exact solution of the 2N X 2N equations

can then be obtained from a perturbation expansion of the exact solution about

the zeroth order approximation.

3



— 
---.-- . —-~~- . - ..----. 

— - -

For the case of N sinusoids in 1—pole, low pass noise, the L prediction

filter coefficients are expanded in terms of the input sinusoids as well as two

delta functions which occur at the beginning and end of the filter. This expansion

also leads to a set of 2N X 2N equations. For this case the values of the MEM

estimate evaluated at the frequencies of the sinusoids are shown to be a function

of the frequencies of the sinusoids. This result is reasonable since the signal-

to-noise ratio per unit bandwidth is also a function of fr equency.
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INTRODUCTION

The maximum entropy method (MEM) of spectral analysis , which was origi-

nally proposed by Burg (1967 , 1975), has been widely applied in geophysical data

processing. The correspondence between MEM and linear prediction filtering,

as discussed by van den Bos (1971), has allowed the app lication of a large body

of literature on autoregressive (AR) time series analysis to MEM. Ulrych and

Bishop (1975) and Ulrych and Clayton (1976) give a thorough review and discussion

• of MEM and AR analysis.

An important application of MEM is to the spectrum analysis of data contain-

ing multiple sinusoids in noise. Even though the proper time series model for

this case is not an AR model (as will be discussed in more detail in the next sec-

tions), MEM can still provide excellent sinusoid resolution (especially for large

signal-to-noise ratios). The improved resolution offered by MEM over the more

conventional Fourier spectral estimation methods for this case has been well docu-

mented in the literature (e. g., Ulrych , 1972; Ulrych and Bishop, 1975). For pur—

poses of comparing the performance of MEM with other spectral esiimation tech-

• 
( 

niques , Lacoss (1971) and more recently Frost (1977) and Marple (1976) have

examined the theoretical MEM spectral estimate when the correlation function

of the data is known exactly and consists of sinusoids in white noise. The use 
of5



an exact matrix inverse identity for computing the theoretical MEM spectral

estimate for the cases of one and two sinusoids in white noise was discussed by

Lacoss (1971) and Frost (1977). However, when there are more than two sinus-

oids , the use of the inverse identity becomes tedious. Even for two sinusoids ,

the analytical form of the theoretical MEM spectral estimate which is obtained

from the repeated application of the inverse identity provides little insight into

the interaction between the positive and negative frequency components of the

sinusoids which occurs in the MEM estimate (Marple , 1976). In this paper an

alternative approach based on the method of undetermined coefficients will be

used to compute the theoretical MEM spectral estimate when the correlation

• lags of the data are known exactly and correspond to multiple sinusoids in white

noise and to multiple sinusoids in 1—pole, low pass noise. It will be shown that

the method of undetermined coefficients provides a convenient description of the

interaction between the various frequency components of the sinusoids which oc-

curs in the theoretical MEM estimate. Further , useful approximations for the

theoretical MEM spectral estimate may be obtained for cases in which the inter-

action between certain sinusoidal frequency components is small but not negli-

gible. For the case of 1—pole, low pass noise , it will be shown that the MEM

spectral resolution is a function of the frequency and becomes worse in the

spectral regions where the noise power 
increases.6
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MEM SPECTRAL ANALYSIS OF MUL TIPLE SINUSOIDS IN WHITE NOISE

In this section we will consider the case when the correlation lags of the

data, p(.t), L 0 ,1,.. . , L, are known exactly and can be written as follows

N
p(L) = cr2 

~~~ + L a2 cos 2lTf L (1)
n=1 ~ n

where 8(L) is the Kronecker delta function , is the power in the ~th sinusoid ,

represents the fr equencies of the sinusoids (which are normalized to the sample

frequency), and is the white noise power. The MEM spectral estimate,

• S(f) , may be written as follows (Ulrych and Bishop , 1975)

S(f) = ~ a2 
Q(f) (2)

where ~ is the sampling interval, and

• L-1
Q(1) = Ii — ~ g(k) e

_2
~

Jf(
~~’)I 2

k 0

• where, f is normalized to the sample fr equency . The L prediction coeffi-

cients , g(k), k=~ ,.. . ,L-1, are obtained from the normal equations

7
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I

L-1
~ p (2 -k)  g(k ) = p (L+ 1), L=o, . . . , L—1 (4)

k=O

and the constant Q.2 is obtained fr om the g(k ) by

L-1
= p(O) - L g(k) p(k +1) (5 )

k 0

Lacoss (1971) and Marple (1976) treat the problem of computing S(f) either

through the direct numerical solut ion of equations (4 ) -.(5) or through the use of

a well known mat rix inversion identity which is sometimes referred to as Wood-

bury t s identity (Zielke , 1968). As noted above , the application of Woodbury ’s

identity becomes qu ite tedious and leads to very extensive analytic expressions

for g(k) and S(f) if N is larger than 2.

An alternative technique of examining S(f) analytically and numerically is

the method of und etermined coefficients. This method consists of substituting

a solution for g(k) , which is expressed in terms of unknown constants, into

equation (4). This substitution then leads to a set of equations for the unknown

constants. This technique was originally applied to the continuous analog of

equation (4) by Zadeh and Raga.zzini (1950) and more recently has been applied

directly to equation (4) by Satorius and Zeidler (1977) when the spectral density

of the data contains both poles and zeroes.

8
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The form of the assumed solution for g(k) when p( L) is given by equation

(1) is

2N 2lTjf k
g(k) =~~ A e  (6)

n=1

where we define (for notat~ona1 convenience) -f (n 1, 2,. .. , N)

and the A are to be determined. This particular choice for the assumedn

solution leads to precisely 2N equations for the A .  Substituting equation (6)

into (4) with p(L) given by equation (1) and equating coefficients of exp(2~Tj f L)

(for r 1 , 2,. . . , 2N) in the resulting equation leads to the following 2N equations

for the Ar

2N
A + 

~~ 
Yrn A = 

2 2 ’ r 1 ,2 , . .., 2N (7)r n 1  L+2Cr /ao rn~r

where in (7) we have defined a2 ( n 1 , 2 , ... , N) and Y is given by

0 (f -f )L n  r

L+2a Ia

o r 9



where

L-1

~~T (f) ~ e217j &. (9)
k=O

It is noted that the net effect of the method of undetermined coefficients is to

transform the original LXL equations (equation (4)) to the set of 2N X 2N equa-

tions (equation (7)). This transformation yields a smaller set of equations to be

solved whenever L> 2N.

Equations (6)-(8) show that the prediction coefficients , g(k) , can be ex-

pressed as a sum of the positive and negative frequency components of the input

sinusoids and that the amplitude of each sinusoid , A , is coupled to the amplitude

of all the other sinusoids through coupling coefficients , 
~
‘rn~ 

The coupling

coefficients vanish if 
~n 

— 

~r
1 is some integral mult iple of i/L. Also, as

the factor , L + 2cT~/c72, becomes large , the V approach zero. As the V

approach zero , equation (7) decouples and the Ar are given to a good approxi-

mation by

2lTj f

A e r 1, 2,. .., 2N. (10)r 
L+2a2/ ao r

10
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• • Using equations (6)-(8) we may express all quantities of interest in terms

of the A . From (5) we have for a2
V

2N — 21T~f
a2 =a 2

~ 1+~~~~A e  n~ (11)

As the 
~
‘rn approach zero, ~~ is given to a good approximation by

a a 1 +7 ( L ÷ 2a ~/a2 ) ’
~~. (12)

From equation (3), we have for Q(f)

Q(~ 
= Ii -e 2

~~ L A 0
L~ n 

f) ~-2 (13)
n=1

it is interesting to note that Q(f) evaluated at the frequency of the rth sinusoid

can be simply expressed in terms of Ar and (J2/ Cr
2
. The result for 

~~
1r~ 

is

= IA r I 2(a
~/4a:), r 1,. .., N. (14)

11
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Equation (14) is valid regardless of the frequency separation between the N

sinusoids. (Of course, as the frequency separations approach zero , the maxima

of Q(f) will not necessarily be equal to the Q(f ) . )  As the 
~
‘rn approach zero,

is given approximately by

r~~ 
(a

4/4cr~) ( L ÷ 2 a2/a2)
2
, r 1, . . . , N. (15)

When L >>  2C72/CT2, equation (15) becomes

rr=i , . . . , N. (16)

A result similar to equation (16) was also obtained by Lacoss (1971) for the

theoretical peak values of the MEM estimate of a real sinusoid in whit e noise.

As pointed out in the recent paper by Ulrych and Clayton (1976), the proper

time series model for N sinusoids in white noise is an autoregressive-moving

average (ARMA) model which contains 2N autoregressive (AR) terms and 2N

moving average (MA) terms. Therefore , since an infinit e order AR model is

required to model a finite order ARMA process (Gersch and Sharpe, 1973),

it is expected that as L ~~, S(f) will converge to ci2 A (for f ~ f ;  n~ J , . . .  , N).

This can be seen quite simply by noting from equation (10) that

12 

~~~~~~~~~~~~~~~~~~~~~~~~ .—~~~~~~ --. ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 
_ • _

~4. .. ii4



I
1-

lim A 0  (f — f ) = 0 ,

provided f ~ f (n=1,... , N). Therefore , from equations (2), (11), and (13),

S(1) converges pointwlse to (72 A as L ’ ~ when f ~ I and from equation (16)

it is seen that provided the correlation lags are known exactly, the resolution

capabilities of S(f) inprove without limit as L-’ regardless of the value of

a2. Of course, in reality the correlation lags are never known exactly but must

be estimated from a finite amount of data and , therefore , a practical limit is

• Imposed on the value of L which provides a tradeoff between MEM resolution

and the confidence in the estimates of the correlation lags (as well as the in-

• creased inaccuracies which occur when computing a larger number of predic-

• tion filter coefficients) . The criteria which have been most frequently applied

to the problem of determining the optimum value of L are the Akaike final

• prediction error (FPE) criterion (Akaike , 1969, 1970) and the Akaike informa-

tion theoretic (AIC) criterion (Akaike , 1972, 1974). The application of these

different criteria has been considered by a number of authors (e. g., Gersch and

Sharpe, 1973; Akaike, 1974; Jones, 1976). The problem of determining the

optimal value of L is further discussed by Ulrych and Bishop (1975) and

Ulrych and Clayton (1976).

13 



-~~

APPROXIMATIONS TO TIlE THEORETIC AL MEM SPECTRAL

ESTIMATE FOR SINUSOIDS IN WHITE NOISE

Note that when some of the >‘rn are negligible, an approximate solution

(zeroth order) for the Ar may be obtained by setting the negl igible V to zero

in equatIon (7) . A better approximation to the true Ar may be obtained by ex-

panding equation (7) in a perturbation expansion about the zeroth order approxi-

niation. In particular , let B be the matrix with elements given by

1; i lk  =j

= 

~kY if 
~>‘kJ is not negligible in zeroth order

0; otherwIse

Further , let ~ be the matrix with elements 
~
‘kj given by

0; l f k ~~ j

• 
~kj = 

~kJ ’ fl Vkj is negligible In zeroth order

• 0; otherwise

Equation (7) may now be expressed in the equivalent matrix form

(
~÷ B .1y~

1)) A (17)

14



where I Is the 2N x 2N identity matrix ; A is a column vector with kth

element given by AK ; and = B 1 F, where F is a column vector with
th 2 2 (0)k element given by exp(21rjf .~)/( L + 

~~o/Crk~ ~ is the zeroth order

approximation to A. Equation (17) can be further expanded in a perturbation

expansion for A in terms of the matrix ~,(1)
• The result is

A = E (18)— p r O

where,

= ( B ~~ 
( 1))P ~~~~ (19)

Equation (18) is the desired perturbation expansion for A in powers of

The convergence of equation (18) is discussed in the Appendix.

As a specific example , consider the case of two sinusoids in white noise in

which there is little interaction between the positive and negative frequency corn-

• ponents of the sinusoids but there is appreciable interaction between the two posi-

tive frequencies (and , therefore , the two negative frequencies). For this case ,

the 8 coefficients V13~ V31, y
41

, V14~ y
23, y

32
, >‘24’ and V42 may be neglected

In zeroth order , and , therefore , A~°~ Is obtained by solvin g the two independent

sets of 2 x 2 equations involving only the non—negligible coefficients y
12

, v21~

15



and y
43

. From equations (18)-(19), it Is straightforward to obtain approxi-

mations for Q(f) . To zeroth order , Q(f) is given by

Q(f ) Q~~ (f) ~i - e 2
~~ (A~~ O L(f f f) + A

~~ O L(f .f)) . (20)

In equation (20), we have neglected ~~~ and ~~~ which is equivalent to neglect-

ing the negative part of the frequency spectrum in Q(f) and is consistent with the

neglection of the interaction between the positive and negative frequency compo-

nents In the zeroth order approximation . The approximation s in obtaining equa-

tion (20) are equivalent to applying Woodhur y ’s Identity to the correlation matr ix

formed by the positive frequency components of the two sinusoids as suggested

by Lacoss (1971). Equation (20) will give a good approximation to Q(f) for f

sufficiently far from zero and will also give the zeroth order approximation to

F ~~
t
~r~’ i.e. ,

4

r 1 ,2. (21)

However , for certain applications (e.g. , Frost , 1977), the errors introduced by

neglecting the negative frequency components In Q(f) can be appreciable. To

include these effects (to first order) we have from equations (18)—( 19)

Q(f) ~ QW(f) I i - e 2
~

j
~~~ (A

(
~

) 
+ A~~~). 0L~ n~~ 

2 
(22)

16



Equation (22) will provide a better approximation to Q(f) over a wider range of

frequencies than Q~~ (f) ; however , ‘
~~r~ 

will only be correct to zeroth order ,

i.e. , (f rom (19) and (22))

4 2

4 4  + A~~~— —-~~ A~
1
~ 0L~ n V  1

2 
(23)

r 1 , 2.

Note that for small values of a
2/ a2 (r=1, 2), QW( f )  will be approximately

correct to first order (as can be seen from equation (23)). Higher order approxi-

mations , Q(P)(f) (correct to order p-i at f=f
1 or f2 ), may also be obtained

as In equation (22). It should be noted that such approximations to Q(f) which

include the interaction between the positive and negative frequencies would be

difficult to obtain using Woodbury ’s identity. This is because the identity would

have to be applied to both the positive and negative frequencies and would result

in a complicated expression for Q(f) which would provide little insight into the

interaction between the various frequency components of the sinusoids.

As a numerical example to illustrate the difference between the approxima-

tions for Q(f) given by (20) and (22) and the exact expression given by (13),

consider the case when f~ .25; = .26; L = 9; and o~ r a  = . ia2. For

• this case, the magnitudes of the coupling coefficients between the positive and

17
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negative frequencies are (from (8)): 
~
‘24 

= I V42 I = .029; = V32 1 =

1714 1 1741 1 .033; 1 V13 1 = 1 v31 1 .034, and the magnitude of thecou-

pling coefficients between the closely spaced lines is: I V12 I = I v21 = I V3~ I =

I y~~ 
= .306. As seen from equation (A-4), equation (18) converges for this

case. In Figure 1 plots of Q(f) (exact), Q(O)(f), and QW(f) are presented.

As is seen, QW(f) provides a better approximation to Q(f) than does Q~~(f).

It should be pointed out that the value of L used in this example (L 9) was

only chosen for purposes of comparing the different approximations for Q(f)

and does not represent an optimal choice for L for this example. Indeed, as

previously discussed, when the correlation function is known exactly there is

no cut—off value for L and the theoretical MEM resolution improves without

limit as L is Increased.

MEM SPE CTRAL ANALYSIS OF MULTIPLE SINU SOIDS

IN 1-POLE, LOW PASS NOISE

In this section we will consider the case when the correlation lags are known

exactly and can be written as

p (L)  u~ e
0

~~ + eos2lTf L (24)

EquatIon (24) corresponds to the sum of N sinusoids in 1-pole, low pass noise.

A determination of S(f) for this case indicates the resolution properties of MEM

18
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In a background noise with variable spectral density. For this case we expand

the prediction coefficients as follows

2N 2i~jfk
g(k) = c18(k) 

+ C
26(k 

- L + 1) + ~ A~e 
n 

(25)

where, as in equatIon (6), 
~ +N 

E - f (n=i ,2, . . . ,N). This particular choice for

the assumed solution is similar to the solution of equation (4) for the more gen-

eral case when the spectral density of the data contains both poles and zeroes

(Satorius and Zeidler, 1977) and leads to precisely 2N+2 equations for the A ,

C1, and C2. Substituting (25) into (4) with p(L) given by (24) and equating

coefficients of exp(2itjf L), r=1, 2,. . . , 2N, and exp(~ r~ in the resulting equa—

tion leads to the following 2N+2 equations for the A , C
1
, and C2

21Tjf _21T
~
fr
(L_l)

2N e -C -C eH A +~~~~ A = 
1 2 (26)r 1 rn ~ L+2a2/ a ’2

r 1 ,2,...,2N

• -
-

~~~~~~~~~~ -~~~~
- • -

~~~
-

~~~~~~~



_ _  - • 
- •

C
1 

= e~~ - 

1 - ~~~~~~ 
(27)

2i~jf L
2 N A e  “

C2 
= 

n~1 ea_e
2”
~
’
~ 

(28)

In equation (26) ~.i is given by

~rn 
= 

L+2a2/&2 ~ L~ n 1r~ 
(29)

and 0 ,2 
is given by

2 
1 — cos2nf /cosha 2

= 
tan1~ 

0
r (30)

• where ~a
2 

(xi l,...,N). Substituting equations (27)_(25)inth (26)leads

to the following set of 2N equations for the Ar

2N / 2lTjf
A -

~ 

t y A k e r 
— e~~’ $ ,  r=1,2,.. . ,2N (31)

n~r
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where the 
~r 

are given by

~r 
{L + 2D~ / a ,2 

+ (e~~ - cos2irf )/(cos2irf - cosha)} (32)

and the 7rn are given by

/ .—1 -a+2iTjl(f —f )L+f( a+2i~ f~~ e ~~n r
= 

~L~n 1r~ 
- kl-e / + 

i - ~~~~~~~~ 
~r (33)

Equation (31) is similar in structure to (7) and becomes identical to (7) as

a -~~ ~, as it should. Although the 7rn in (33) are considerably more compli-

cated than those for the white noise case (equation (8)), they still approach zero

as L -~ ~ . As the 7rn approach zero , equation (31) decouples and the Ar are

given to a good approximation by

/ 2lTjf
A~~~ Ie r e_a) p (34)

Using equations (25)-(30) we may express all quantities of interest h terms

of A , C1, and C2. From (5) we have for 0
2 (after considerable simplification)
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02 
= a~(l_e _2a) 

~ + 

n~i 
~~~~~~~~ 

L (35)

From (3) and (25), we have for Q(f)

= I i - c 1 e
2
~~~- C2 ~~~~~~ _e 2~~~~~1 

AnøL~ n~~~~~~. (36)

As in the case of white noise (equation (14)) , Q(f) evaluated at the frequency of

the rth sinusoid can be simply expressed in terms of Ar and c72/o1~ The result

for Q(f ) is

2

~~~~ 
IA r [~

2
~ r1 ,2,...,N. (37)

As the V approach zero and for L ~~> $
1
-L , Q(f ) is given to a good approxi-

mation by (from (34))

a/c2\ cosha - cos2lTf) L
2 

2 
r r 1 ,2,...,N. (38)

\ a /  slnh a
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Equation (38) shows that for large L, the values 
~~~~ 

are a funct ion of

as well as cr2/o2. This result is reasonable since the signal-to-noise ratio

(SNR) per unit bandwidth is a function of frequency. This indicates that the

resolution capabilities of the MEM spectral estimate will be dependent on where

the sinusoids are located in the noise spectrum. For sinusoids located in the

low SNR regions, the MEM resolution will be worse than for sinusoids located

in the high SNR region. This is indicated in Figure 2 where Q(f) is plotted for

4 sInusoids of equal amplitudes. Two of the sinusoids are located near the SNR

region and the other two sinusoids are located near the high SNR region. As is

seen, the two sinusoids in the low SNR region are poorly resolved whereas the

two sinusoids in the high SNR region are well resolved (arrows in Figure 2 in-

dicate the correct location of the frequencies of the sinusoids). As in the case

of Figure 1, the value of L used in Figure 2 (L=14) was only chosen for pur-

poses of illustrating the variation of two sinusoid MEM resolution versus fre-

quency and does not represent an optimal value for L.

It should be noted that in complete analogy with the white noise case, the

proper time series model for N sinusoids in additive i-pole, low pass noise is

an ARMA model which contains 2N+l AR terms and 2N MA terms. (The

additional AR term is due to the 1-pole structure of the additive noise. ) There-

fore, one expects that as L -. ~, S(f) will converge to the power spectral den-

sity of the 1-pole noise (for f 
~ 

f ;  n 1 ,. . .  , N). This can easily be seen from

the development presented in this section by noting from equation (34) that



lim A
fl~L

(f -
~~~ 

= 0 ,
L~~

provided f ~ f (n=1,. . .  , N). Further from equations (27) and (28), it is seen

that c1 ~ -2 and C2 0 as L ~. Therefore , f rom equations (2), (35), and

(36) we have

sIn1~a
li rn S(f) = 

cosha - cos2lTf ’ � f (n 1,.. .,N). (39)

Equation (39) is the expression corresponding to the power spectral density of the

1—pole, low pass noise. Therefore, from equations (38) and (39) It is seen that

S(f) provides an increasingly accurate pointwise approximation to the background

noise spectrum as well as precise sinusoid resolution capabilities as L

However, as noted in the previous section, this only applies when the correla-

tion lags are known exactly.
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CONCLUSIONS

In this paper , the theoretical MEM spectral estimate of multiple sinusoids

in noise has been examined by the method of undetermined coefficients. For

the case of sinusoids in white noise, the prediction filter coefficients were ex-

panded directly in terms of the input sinusoids (equation (6)). This expansion

leads to a transformation of the original L X L equations for the prediction

coefficients (equation (4)) to a set of 2N X 2N equations (equation (7)). The

transformed equations are a smaller set of linear coupled equations than equa-

tion (4) when L> 2N and are particularly useful for purposes of computing the

theoreti cal MEM spectral estimate for large L (high resolution limit). Furth er,

the reduced equations (equation (7)) have been shown to provide additional insight

into the analytical structure of the MEM spectral estimate. Also, for certain

cases where there is little interaction between some of the frequency compc -

nents of the input sinusoids, the 2N X 2N equations may be approximated by a

• smaller set of coupled equations.

For the case of N sinusoids in 1-pole, low pass noise, the prediction filter

coefficients were expanded in terms of the Input sinusoids as well as two delta

functions which occur at the beginning and end of the prediction filter (equa-

tion (25)). This expansion also leads to a set of 2N X 2N equations (equation

25

A



(31)). For this case, the values of the MEM spectral estimate evaluated at the

input sinusoid frequencies were shown to be a function of the frequency of the

sinusoids. This result is reasonable since the SNR per unit bandwidth is also

a function of the frequency.

The results derived in this paper give a further understanding of the MEM

spectral estimate of sinusoids in noise when the autocorrelation lags are esti-

mated from the data. As the variance in the estimates of the lags becomes

appreciable, deviations in the MEM spectral estimate will being to appear ,

especially at its peaks (e. g., Lacoss, 1971, Baggeroer , 1976).
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Figure I. A comparison between the exact expression and the zeroth order

and first order approximations for Q(f) for tvo sinusoids in white
~‘ 2noise. For this caseL=9; f .25; f .26; and o~~~a = .1o~ .
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APPENDIX A. CONDITIONS FOR CONVERGENCE OF PERTURBATION
EXPANSION IN EQUATION (18)

It is the purpose of this Appendix to establish sufficient conditions for the

convergence of the perturbation expansion expressed by equation (18). We make

use of the following basic result (e. g., Stewart , 1973): The perturbation series

converges to ~2 _ ~~) 1 
if IIp fl < i, where Il’ildenotes any

matrlx norm such that t ( ~~ . C I I  ~ ~I~~t I II I.

The particular norm of which we make use and which is relatively simple to

calculate is the ~ - norm which Is denoted by II I ~. The ~ - norm of a

p x p matrix, A, is defined as follows (Stewart , 1973)

I k I L = m a x(.L1 1A 1.I : i 1 ,2 , ... ,p) (A-i)

where A.. are the elements of A. Therefore, a sufficient condition for the
1] =

convergence of equation (18) is

• ~P~ II , <i .  (A—2)
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Since I I A C I I  ~ I I A I I ~ I I C I I ~~, then a slmp1er sufficia~ conditlon to check Is

I I~~’I I~ I Iy~’~i I~~< 1 (A—3)

For the special case of two sinusoids of equal power in white noise in which

there is little interaction between the positive and negative frequency components

of the sinusoids, condition (A-3) reduces to

1- 
:
~v I  max 1v13 1 + 1y

14 1, Iy
23 I + I)’24 1 < 1  - (A-4)

where the are computed from equation (8).
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